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Estimating Interrater Reliability

in Incomplete Designs

The use of various forms of the intraclass correlation

coefficient to estimate interrater reliability has been

addressed in a number of recent articles (Bartko, 1976; Bintig,

1980; Fleiss & Shrout, 1978; Kraemer & Korner, 1976; Saal,

Downey, & Lahey, 1980; Shrout & Fleiss, 1979). While these

articles have focused on "complete designs", where each target

is rated by each judge on one or more dimensions (variables),

several have touched on "incomplete designs" in which each of

K targets is rated by a different set of judges (i.e., judges

are nested within targets) using the same rating variable(s).

A form of intraclass correlation may be used to provide consis-

tent estimates of interrater reliability for incomplete designs,

the typical question being whether the judges within each of

the K targets agreed with respect to their ratings (cf. Ebel,

1951; Guilford, 1954; Shrout & Fleiss, 1979; Winer, 1971).

The incomplete design is employed frequently in areas such

as climate research, where nk employees nested in each of K

(k=l,...,K) organizations report perceptions on a climate variable

such as "managerial support" (cf. Insel & Moos, 1974; James &

Jones, 1974). An interrater reliability is computed from infor-

mation furnished by a random effects, one-way ANOVA. That is,

each of the K targets (organizations) assumes the role of a

treatment, and ratings (perceptions) provided by the nk judges

S- -$--- ---.
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(employees) furnish values on the dependent variable "X". The

nk need not be equal. A one-way ANOVA is conducted, where a

significant F suggests that variation among the scores on X

was associated more with differences among targets than with

pooled differences among judges nested within targets. An

estimate of interrater reliability is obtained by the following

equation (cf. Ebel, 1951).

MSB - MSW

ICC f (1)

MSB + (nk 1) MSW

where ICC is an intraclass correlation, MSB is the mean square

for between-groups (targets), MSW is the within-group mean

square, and nik is a harmonic mean based on the number of judges

per group k. The more convential term "group" refers to all

judges, or raters, who rated the same target.

Interrater reliability is viewed here as a function of

the degree to which raters who rated the same target agreed

with respect to their ratings; that is, high interrater reli-

ability is indicated by high within-group agreement, and low

interrater reliability is indicated by lack of within-group

agreement. The terms interrater reliability and agreement are

used interchangeably.

The initial objective of this report is to demonstrate

that the ICC above may provide a seriously misleading indicator

of interrater reliability. First, inspection of Eq. 1 demon-

strates that as MSW decreases, the ICC increases. Thus, the
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ICC is a function, in part, of the extent to which within-group

agreement is present, as shown by the degree to which raters

within each group give the same ratings (Bartko, 1976). Note,

however, that the ICC and MSW are based on pooled data, and

the ICC estimate applies to all groups. If the separate within-

group variances are not homogeneous, then the ICC may overest-

imate agreement for some groups, estimate it accurately for

others, and underestimate it for still others. This potential

problem may be checked empirically by a homogeneity of variance

test. Suppose, however, that the null hypothesis of equal

variances is rejected. Does this suggest that interrater reli-

ability cannot be estimated? Certainly not; it suggests only

that a between-group design should not be used and that a separate

estimate of agreement should be obtained for each group.

A second and more important point is that even with high

agreement among raters in each group, the ICC may be very low.

Consider, for example, a scenario in which (a) the raters in

each one of K groups responded almost exactly the same, which

denotes close to perfect agreement among the ratings for each

target and a low MSW; and (b) the mean scores for all K groups

were essentially identical, in which case MSB is zero, or approx-

imately so. Inspection of Eq. 1 demonstrates that, given these

conditions, the ICC would be equal to zero, or even negative

in value.

To illustrate, consider the data presented in Table 1.

The data consist of scores on a random variable X, which has
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five discrete, equally spaced alternatives, for 20 individuals

in each of two groups. In accordance with assumptions under-

lying the use of ANOVA and the ICC (cf. Shrout & Fleiss, 1979;

Winer, 1971), it is presumed that (a) groups (e.g., organizations)

and raters (e.g., employees) were randomly sampled from popula-

tions to which inferences regarding groups and raters are to

be made, (b) raters rated independently, (c) the within-group

residual components are independently and normally distributed

in the population, and (d) the within-group variances are homo-

geneous. The response frequencies in Table 1 indicate that

individuals in each group tended to agree. Agreement is also

reflected by the small within-group variances (.211 and .261).

However, not only is the F-test nonsignificant (p > .05), but

the ICC is -.047, which is regarded as .00 (Bartko, 1976).

This low and obviously misleading ICC is attributed to the

essential absence of variation among the group mean ratings

(3.00 and 3.05).

----------------------------------------------------

Insert Table 1 about here

We hasten to note that lack of variation among group mean

ratings does not automatically indicate a misleading ICC. For

example, low variation among means accompanied by high variation

among ratings within groups provides an accurate ICC of approx-

imately zero. Our concern is limited to conditions of the type

displayed in Table 1, where low variation among group mean
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ratings accompanied by low within-group variance results in

inaccurate estimates of agreement. Moreover, we submit that

such conditions are neither unrealistic nor trivial. Consider,

for example, a study in which a different sample of nk inspectors

(raters) rates each of K airplanes (groups, targets), selected

randomly from those airplanes owned by a particular airlines

company. It is not unreasonable to assume that (a) this company

has followed rigorous maintenance standards in the interest of

satisfying safety criteria, and (b) the nk raters of each airplane

rate that airplane highly in regard to safety. Are we to conclude

that, based on Eq. 1, the inspectors failed to agree with respect

to the safety of the airplanes?

In summary, an JLC based on the one-way, between-group ANOVA

design has potentially serious deficiencies as an estimator

of interrater reliability/agreement. The approach should not

be used if group variances are heterogeneous. Moreover, given

homogeneity of variance, the ICC will be misleading if group

mean ratings do not vary and low variation exists among ratings

within groups. Given either of these situaitons, a different

method is needed to estimate interrater reliability/agreement.

The second objective of this paper is to propose such a method.

Estimating Interrater Reliability

Using a Within-Group Design

The proposed method for estimating interrater reliability

is based on a within-group design. A within-group design was

selected because a separate estimate of agreement may be obtained
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for each group in an incomplete design, and, of major importance,

this estimate is not affected by either failure to have large

between-group differences or lack of homogeneity of within-

group variances. Furthermore, the estimates for each group may

be averaged to furnish an overall estimate of agreement for all

groups if the homogeneity of variance assumption is satisfied.

As we shall demonstrate, this average may be substantially higher

and an obviously more accurate estimator of interrater reliability

than the ICC in the condition of major concern (i.e., high

within-group agreement and low between-group variation).

Within-group approaches for estimating interrater reliability

are not new (Bintig, 1980; Finn, 1970; Selvage, 1976). However,

some, but not all, methods and logical principles presented here

differ from those of earlier treatments. In addition, Cooper

(1976) and Hsu (1979) presented exact small sample and approxi-

mate large sample tests designed to ascertain if raters within

a group agreed significantly with respect to their ratings on

a single Likert-type item. These articles dealt only with

significance tests and did not furnish a basis for estimating

an interrater reliability coefficient. The present authors are

in agreement with Cohen (1960), who expressed the opinion that

when reliability is of concern, significance is a trivial point

because "one usually expects much more than this [i.e., signif-

icance] in the way of reliability in psychological measurement"

(p. 44). Consequently, we have devoted our attention to point

estimates of interrater reliability and do not consider signif-

icance tests.

NO" --------------------
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The presentation of the estimating procedure begins with

the variance on a rating variable "X" in one group, or sx 2

For example, in Table 1, s = .211 for Group 1. An s = 0

2-indicates perfect agreement. Typically, however, sx2 0, in

which case the question is the degree to which raters in the

group agreed with respect to their ratings. To develop a

statistic that estimates degree of agreement, it is necessary

to have a standard or benchmark to compare to s2 Inasmuch as

Sx2 > 0 reflects departure from perfect agreement, we shall adopt

a benchmark that reflects the expected value of sx2 in a condition

of absence of agreement. This expected variance is referred to

as "aE

2Procedures for determining a value of aE for a single

Likert-type scale in a single group have been presented by

Cooper (1976), Finn (1970), Hsu (1979), and Selvage (1976). Finn

and Cooper argued that an interrater reliability of zero occurs

if raters responded randomly to an item. Random responding

implies that each alternative on the rating scale has an equal

likelihood of response. Equal likelihood of response, combined

with assumptions that (a) raters responded independently and (b)

the item X is a discrete random variable with multiple alter-

natives arranged on an interval scale, suggests that aE2 may be

calculated using the equation for the variance of discrete,

uniform distribution. Specifically, define the item X as a

random variable which assumes A (a=l,...,A) finite, equally

spaced alternatives (i.e., A corresponds to the number of
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alternatives on X). Equal likelihood of response connotes that

each value of A has the same probability of occurrence, or

P(X = a) = 1/A. In other words, the distribution of X is uniform

or rectangular. As shown in a number of statistical texts (cf.

Mood, Graybill,& Boes, 1974), the expected variance of X is

then:
Var(X) = E(X 2 ) [E(X)] 2

- (A2 - 1)/12 (2)

2
Equation 2 provides the desired value of a and is inter-

preted as the expected variance of X associated with equal

likelihood of response and zero interrater reliability. A
2.

critical point to be made about a E  is that it is a benchmark

connoting an absence of agreement and is to be viewed as a

statistical abstraction. Whether raters would ever respond to

an item in a sheerly random fashion has no bearing on the

appropriateness of relying upon hypothetical random responding

as a statistical referent for assessing the extent to which a

set of actual responses resemble a set of random responses.
2.

The benchmark iE s now employed to estimate the variance

in ratings due to nonerror variance and then interrater reliabil-

ity. Consider first that an observed score on X, designated

X i Ci=l,...,nk subjects) may be represented as Xi = + (X )

+ el, where P and are the population and sample means on tne

item, respectively, and el.is an error of measurement. The

variance of the Xi, or s 2 , in a sample arises only from varia-

2.
tion in the el, and thus sx 2 is referred to as "error variance".

If the Xi are reflective solely of p, and thus are entirely1i
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2
devoid of error variance, then s2 = 0. On the other hand, if

the X. are a function of error exclusively and conform to equal1

2 2
likelihood, random responses, then sX  = a This suggests that

the extent to which the X. are actually reflective of p, and may1 _

be said to reveal nonerror or true variance, is indicated by

a E2 S2 The use of a E2 S2 to estimate true variance is

a heuristic designed to "breakout" of a closed system in which

restrictions in variances preclude the use of traditional

statistical procedures. Thus, for example, s 2  0 implies that

the X. are solely a function of V, which is indicated by setting
12 2

true variance equal to aE -0 = a E  There is, of course, no

such variance (i.e., v is a constant), but the heuristic shifts

the basis of analysis to a different logical system, based on

2aE2 , in which it is possible to estimate interrater reliability.

An estimate of interrater reliability is obtained by placing

the estimates of the variances in the equation: (true variance)/

(true variance + error variance), or (TE 2 _ 2/[(a - 2+

Sx 2 Sx2)/UE This equation reduces to the equation

suggested by Finn (1970, p. 72), namely 1 - 2 2 where

(Sx2/O 2) estimates the "proportion of random or error variance

present in the observid ratings", and 1 - (SX2/aE 2 ) "gives the

proportion of non-error variance in the ratings, a reliability

coefficient."

To summarize, the equation for estimating interrater

reliability/agreement is:
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2 2 2
r WG =(GE SX )/aE

=1 (x2 /2 (3)

where:

rWG = within-group interrater reliability for a

single group of raters who have rated the same

target on one discrete, equal interval

variable,
2

sx  = the observed (err6r) variance on variable X

for the nk raters in group k,

2
a E  = the variance on X that would be expected if

the raters responded randomly, which is

estimated by (A2 _ 1)/12 for a discrete,

uniform distribution (see Eq. 2).

Note that perfect interrater reliability/agreement is

indicated by sx2 = 0, in which case rWG = 1.0. Conversely, equal

likelihood of response connotes zero reliability and no agreement,

in which case SX2  2 and rWG 0. Given the usual condition

in which 0 < sx2 < CE 2 , as Sx2 approaches GE2 , agreement decreases;

or, as s2 becomes progressively smaller than CE2 , agreement

increases.

The use of Eq. 3 is illustrated by application to the data

in Table 1. With A = 5 (i.e., the item has five alternatives),

GE = 2.0 in each of the two groups [(5 2 1)/12]. Inserting

the values of CE 2 and the observed variances (Sx 2 ) into Eq. 3

supplies the desired estimates of rWG; rWG for Group 1 is .89

[i.e., 1 - (.211/2)], and rWG for Group 2 is .87 [i.e., 1 -
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(.261/2)]. Clearly, values of .89 and .87 are different than

the intraclass correlation of .00, and it is just as clear that

the former values are more consistent with the data than the

latter value. Furthermore, given the similarity of the two

values of rWG, it is possible to average the values and obtain

an overall estimate of interrater reliability for both groups.

Averaging is not recommended if the values of rWG are dissimilar

for the obvious reason that the average would be misleading for

at least some groups. A homogeneity of variance test on observed

variances might be used to decide whether to average the

coefficients across all groups, or perhaps subsets of groups.

[Given homogeneity of variance, the average rWG may be estimated

by 1 - (MSW/aE 2)].

It should also be mentioned that E 2 is not contingent on

the number of individuals in a group. Eq. 2 indicates that the

expected variance of X given random response and A = 5 will be

2.0 regardless of group size (nk). Moreover, Eq. 2 may be
2-

employed to calculate aE for discrete scales of any length.

For example, if X assumes values of 1 through 4, then CE2 = 1.25,
2

while values of 1 through 7 result in aE =4. On the other

hand, group size has other implications for the use of Eq. 3,

and it is possible to abuse the use of discrete scales. These

points are addressed later in this paper.

Within-Group Agreement on Composite Scores

Data employed in an incomplete design are often based on

a composite score rather than a single item. Within each group,
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the composite score takes the form of a sum or a mean per rater

over items designed to measure the same construct. Examples

would be a set of items to be combined to furnish a composite

measure of workgroup morale or team effectiveness in each of K

groups. We will focus here on an estimate of interrater relia-

bility among raters' composite scores on a set of J (j=l,...,J)

items in each of two groups. It is assumed that (a) the J items

are a random sample from a well-defined domain of items; (b) the

n k raters in each group are randomly sampled from a population

of raters, and inferences will be made to that population; and

(c) the item variances and interitem covariances are equal, respect-

ively, in the rater population, which implies that the items are

considered to be "essentially parallel" indicators of the same

construct.

An example of the design in question is presented in Table

2, which represents a facsimile of a problem encountered in

research on agreement among performance ratings. The target for

Group 1 is a probationary pilot, rated on knowledge of safety

procedures independently by five senior pilots (nk = 5) on four

items (J = 4) designed to measure safety. Each item employs the

same seven discrete, equally spaced alternatives (A = 7). The

target for Group 2 is a different probationary pilot, rated

independently by a different set of senior pilots (nk = 6) on

the same four safety items. The between-group ICC, based on the

rater composite (mean) scores (shown at the bottom of each data

matrix) is approximately .00, a result of the fact that the mean

composite score for each group is 6.5. Moreover, the within-
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group ICC for each group is approximately .00 [cf. Shrout &

Fleiss, 1979, equation for ICC (2,1)]. This is a result of the

fact that the items, essentially parallel indicators of the same

construct, have approximately identical means in each group, from

which it follows that each between-item mean square is close to

zero.

Insert Table 2 about here

Are we to conclude that the senior pilots lacked agreement

in regard to probationary pilots' safety procedures? Certainly

not; the variance (now designated s ) and rWG for each item,
j-

shown in columns to the right of each data matrix, indicate high

levels of agreement. In fact, the average rWG, designated r

is .925 for Group 1 and .93 for Group 2. The separate r Ws were

calculated using GE2 = 4.0 (i.e,72-1)/12], and I may be calcula-
2

ted for each group because the sx.s are the same or similar.

An average of the rWG s for the two groups may also be estimated
2 2 -- _

(=.93) because of the similar Sx. and mean sX., or Sx. , for each

group. [Sx. is equal to the within-item mean square in the ANOVA

-2 2
for each group, and rWG may be estimated by 1 - (sx./CE )(Finn,

1970)].

While r-G for each group indicates agreement among the

raters, it fails to take into account the "boost" in reliability
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to be expected from combining essentially parallel items to form

a composite. That is to say, we would expect the estimate of

agreement based on the composite ratings per rater (i.e., a mean

or a sum taken over items) to be higher than the estimate of

agreement based on the rWG. This point is illustrated by deriving

an equation to estimate agreement among the composite (mean)

ratings per rater in each group. (Note that this is not the

procedure typically employed in ICC designs, which consists of

estimating interrater reliability among ratee (item) means, based

on aggregation over raters.]

The derivation of an interrater reliability coefficient for

composite scores in one group is predicated on extrapolating from

the logic for one item. The model equation is X. = i + (+ - ) +1

e where XF and e- are the mean observed and error scores for

the ith rater on the J items, respectively, R is the population

mean (equivalent for all items), and X is the observed grand mean.

As in the case of a single item, variance of the X. scores in1

a sample arises only from variation in the e.. If the J itemsI 1 -

are equivalent (essentially parallel) and are reflective solely

of p, then the variance of the XT scores will be equal to zero,

implying perfect agreement. Variation in the 17 scores denotes1

departure from perfect agreement. Given essentially parallel

items, the variance among the X. scores may be estimated by
22 2

J(Sx.)/j= sX /J, where s is the mean item variance, J(Sx. )

estimates the error variance among sums taken over J items

(Gulliksen, 1950), and division by J2 estimates the error variance
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among means. We will refer to this variance as "error variance".

As discussed earlier, the nonerror or "true variance" for
2 2 2.

an item is estimated by the heuristic (oE 2 _S. where y2 is

employed as a benchmark to indicate the expected variance of the

X. scores on an item j (or X. ) associated with equal likelihood
1 - 1j

of response and zero interrater reliability. On J essentially

parallel items, the true variance for each item may be estimated
2

by(aE Sx. ) , from which it follows that the true variance among

~2 2 2 2means taken over items is estimated by _J2(E s = ( E

2 2 2 2
SX [Gulliksen, 1950; where J2(E - Sx is the estimated true

variance for sums]. Thus, the estimated true variance associated

with variation among the X. is the same as that associated with
1

each item.

The interrater reliability associated with agreement among

the mean scores in a group, designated rWG(i), may now be esti-
!1

mated as follows:

2 2

E x
rWGC (ai (E 2 s . + (S2' j /J()

2 2
J(OE 2 )

2 -X+
-GUE X.

- 3 )

-- J 4
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Equations 4 or 5 furnish a computing procedure for rWG(ii).

It is also possible to demonstrate that these equations provide

an estimate that is equal to the Spearman-Brown (SB) prophecy

equation applied to rWG, the correction factor being the number

of items. This equality involves dividing the numerator and

denominator of Eq. 5 by aE2 , which is:

J [l - (Sx ./ o. ]1

rWG(X i) = -- (6)

1 2) 2
J[1 - (SX'/Ej E +  (Sxj/a )

2 2 -2 2where 1 - (sx/OE) = r- and (sx./OE I- thus Eq. 6

reduces to J(rWG)/[JIrrWG) + (1 - rWG)], or

J(r )/[l + (J - 1)r WG] (7)

which is the SB equation.

Applied to the data in Table 2, Eq. 5 (and Eq. 7) provides

the following estimates of agreement for Groups 1 and 2, respect-

ively:

Group 1: rWG(i) = 4(4 - .30)/[4(4 -. 30) + .30] = .98

Group 2: rWG(7i) = 4(4 - .285)/[4(4 - .285) + .285] = .98

Thus, given that assumptions are satisfied regarding essen-

tially parallel items, rwG(Ii) will exceed WG unless the latter

statistic is .00 or 1.00. Furthermore, the rWg(i) may be averaged

over the two groups inasmuch as the sX . are similar._J
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Finn (1970) also addressed within-group interrater reliability

for a set of items on which item means were essentially equal,

and recommended the use of Eq. 7 (the SB equation) to estimate

reliability for items, where rWG was interpreted as the "mean

reliabilityper item." Finn did not, however, furnish statistical

justification (or derivation) for the SB equation, including,

in particular, the requirement that the items be essentially

parallel indicators of the same construct. This is a critical

requirement because it justifies the derivation of Eqs. 5 and 7

and suggests that the composite scores are interpretable in ref-

erence to an underlying construct. Moreover, the procedures

apply to aggregation over items, and not raters, a point confused

by Bintig (1980). That is, in a review of the Finn (1970) paper,

Bintig interpreted the Finn procedure as an estimator of inter-

rater reliability for aggregates taken over raters for each ratee

(items in this paper). It might also be noted that Bintig used

an erroneous estimate of aE2 (i.e., a value of 3.5 was used for

a seven-point scale, which applies to neither discrete nor

continuous scales).

In conclusion rWG(i) is applicable in incomplete designs

when (a) items on which composites (per rater) are based are

essentially parallel indicators of the same construct; (b) the

mean composite score for each group is approximately the same,

and (c) little variation exists among raters in each group. It
2

is possible, of course, for sx., and therefore rWG(i), to vary

3 -
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as a function of group, in which case the rWG(!i) should be

interpreted, and reported, separately for each group. On the
2

other hand, the sx and rWG(i) may be similar over groups, which
2

can be tested by a homogeneity of variance test on the Sx. (the

within-item mean squares). Given similarity, the rWG(i) can

be averaged over groups. [If the decision is to average the

r wG( i and the n kdiffer, there would be little reason to weight

the rWG(X) by nk because the rWG(ji) are similar. The same

argument applies to r In other words, the reasons for using

rWG(X i) rather than an ICC approach in incomplete designs are

the same as those for using rWG.

Discussion

In regard to incomplete designs, it has been demonstrated

that rWG and rWG(i) provide more accurate estimates of interrater

reliability/agreement than an ICC when within-group variance is

small and differences among group means on an item or a composite

(per rater) are essentially nonexistent. In effect, rWG and

rWG(Xi) furnish an alternative source of estimation when the range

of values selected by raters on an item, or on a set of items,

is restricted for at least some groups. Moreover, unlike the

ICC, calculation of rWG and rw i is not dependent onWG WG(X.) t1
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homogeneity of within-group variances, and thus separate estimates

of interrater reliability/agreement may be calculated for each

group in the absence of such homogeneity. On the other hand,

if variances are homogeneous, then the estimates may be averaged

over groups to provide an overall estimate of agreement.

Given homogeneity of within-group variances, rWG and rWG(i)

will lose their advantage over the ICC for incomplete designs

as (a) within-group variances on an item or composite score increase,

or (b) the within-group variances remain small but differences

among the mean group item/composite scores increase (i.e., MSB

in Eq. 1 increases in value). 1 The latter point is of major

concern because it raises the question of when to use the methods

suggested here versus an ICC approach, given that at least some

variation exists among group means. Future research is needed

to answer this question, where, for example, a Monte Carlo study

would help to clarify the conditions (e.g., degree of variation
2 2

among group means, in relation to the magnitudes of sx., Sx1,

and nk) which determine variation among within-group coefficients

and ICCs in nonobvious situations. A Monte Carlo study is not

attempted here, although a brief illustration of point "b" above

is presented using the data in Tables 3 and 4. Table 3 has the

same pattern of ratings as Table 1 (i.e., low within-group

variances); however, a moderate difference in group means (1.05

scale points) was introduced by adding a constant of 1.0 to the

scores in Group 2. The resulting ICC is .70, which compares much

4Ni~mm I,
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more favorably than the ICC of .00 (Table 1) to the average

(over groups) rWG of .88. Table 4 again has the same pattern

of ratings as Table 1, but a large difference in group means

(2.05 scale points), achieved by adding and subtracting constants.

The ICC in Table 4 is .90, which is slightly larger than the

average rWG of .88.

..............................................................

Insert Tables 3 and 4 about here

--------------------------------------------------------------

The preceding example is illustrative of the course of action

suggested for incomplete designs at the present time. First, if

within-group variances appear nonhomogeneous, then conduct a

homogeneity of variance test. If homogeneity is iejected, then

employ rWG or rWG( i) to estimate interrater reliability for each

group and do not average estimates over groups (at least over

nonhomogeneous groups). If homogeneity is not rejected, then

compute both an ICC (for an incomplete design) and an average

rWG or rWG(X) over groups. If the estimates differ, then review

the raw data matrix and summary statistics (e.g., group means,

within-group variances) in relation to the two estimates and

ascertain which estimate appears to provide the more accurate

point estimate. Finally, report both estimates and the rationale

for selecting one as more accurate.

This article is concluded with brief discussion of concerns

and potential problems regarding the use of rWG (the discussion
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applies to rWG(i)). Selvage (1976) and Hsu (1979) argued that

the theoretical distribution of X employed in the calculation
2!

of aE (Eq. 2) should be thought of as normal rather than rect-

angular. This argument, however, misses the point made earlier

that aE2 is a theoretical benchmark used to indicate equal likeli-

hood of response and zero reliability, and makes possible an

assessment of the degree to which actual responses resemble random

responses. This benchmark is lost if the theoretical distribution

is assumed normal for the simple reason that a normal distribution

already reflects partial agreement (i.e., there are more scores

clustered about the mean than in the tails of the distribtuion).

It would appear unwise to employ a theoretical benchmark for lack

of agreement that already reflects partial agreement. Consequent-

ly, the use of a rectangular distribution for item distributions

is recommended.
2

Selvage (1976, p. 606) argued further that although raters

might use only five (or six, etc.) points on a rating (item)

scale, the points "are only representative of possible values

along the continuum from one to five." This implies that the

distribution underlying the random variable X should be regarded

as continuous (i.e., represents an infinite number of values)

2rather than discrete in the calculation of aE This argument

has validity, but it is also the case that an argument can be

made for discrete scales. For example, one could argue that the

alternatives in a five to nine point scale encompass sufficiently

the degrees (categories) of cognitive differentiation/sensitivity
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used by most individuals. On the other hand, a continuous scale

may be advisable in some cases, and the reader is referred to

the Selvage paper for statistical procedures to estimate E2

Additional concerns include bias in the estimate of rwG,

estimates of less than zero, and artificial manipulation of

estimates by unrealistic measurement scales. In regard to bias,

rWG may be thought of as a function of two unbiased values; sx2

is an unbiased estimate of aX2 for observed values onX, and UE
2

is a population parameter. Nevertheless, a ratio of unbiased

values (i.e., sx 2 /E2) is itself biased (Winer, 1971). However,

like the ICC in Eq. 1, which is biased for the same reason, the

bias in rWG is expected to be minimal for small nk and essentially

negligible for large nk.

It is possible for rWG to assume values of less than zero.

In fact, a number of theoretical distributions of observed ratings
2 2

results in an sX  greater than a 2 and thus a negative rWG.

For example, given one item with A = 5 and nk = 10, if five

raters selected alternative 1 and five raters selected alterna-

tive 5, rwG would be equal to -1.22 (i.e., 1 - 4.44 However,every

distribution of observed X that could result in a negative rWG

would reflect rather serious degrees of disagreement. Consequent-

ly, it is recommended that negative estimates be set equal to

zero to indicate lack of agreement among raters.

Of special importance is the fact that it is possible to

manipulate artificially the value of rWG by constructing unreal-

istic measurement scales. Suppose, for example, that an individ-

ual constructed a meaningful seven-point scale that encompassed
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all likely responses. Suppose further that this individual added

three spurious alternatives to each end of the scale; that is,

alternatives with a zero base-rate (e.g., a teacher evaluation

such as: This teacher has never made even the most trivial

2
mistake). We now have a 13-point scale, resulting in an E =

14, when in fact the true scale with seven points should have

aa2 = 4. Finally, suppose that the distribution of observeda E

values on X is uniform on the true seven-point scale, which suggests

an interrater reliability of zero. The interrater reliability

is not, however, zero. For example, with nk = 21 and s X  = 4.2,

rather than the accurate rWG .00 [i.e., 1 (4.20/4.0], rWG

is .70 [i.e., 1 - 4.20/14.0). This is the result of artificially

adding six spurious alternatives to the scale.

A different problem occurs with using too short a scale,

where, for example, the observed distribution on a three-point

scale could appear approximately uniform. On a longer but mean-

ingful scale (e.g., seven points), the scores might spread, but

the locus of points could remain dense within the original three

points. These conditions imply that the rWG for the three-point

scale will be artificially low. In general, it would seem that

too short a scale would be a result of poor research practice

rather than artificial manipulation, although the latter condition

is a possibility if a vested interest existed in obtaining a low

interrater reliability.

In conclusion, use of the procedures discussed here rests

on the assumption that the measurement scale is meaningful. This
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does not suggest that all points on the scale have to be used

in every sample; it suggests only that the scale is sensitive

to, and limited to, psychometrically reliable differentiation

on the measured attribute. Valid scaling procedures in conjunction

with professional and ethical judgment should satisfy this criterion.

- - ... .- - x _ .z , . .
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1All references to the ICC approach in this section refer

to the ICC for incomplete designs (Eq. 1). It is assumed that

lack of variation among item means would generally preclude the

use of the within-group ICC.

2The underlying theoretical distribution for rater composite

scores in Eqs. 5 and 7 is normal, a result of the central limit

theorem. This does not detract from the fact that equal likeli-

hood of response on each item implies that one begin with a

rectangular distribution for each item.
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Table 1

Intraclass Correlation for Twenty Raters

Nested in Each of Two Groups

Scale for Frequencies of Scores Frequencies of Scores
Variable X in Group 1 in Group 2

1 0 0

2 2 2

3 16 15

4 2 3

5 0 0

Mean: 3.00 3.05

Variance: .211 .261

Analysis of Variance

Source df SS MS

Between-Groups 1 .025 .025 F =.106N S

Within-Groups 38 8.959 .236

Intraclass Correlation

ICC = .025 - .236

.025 + (19)(.2363

= -.047

.00

Note: NS - not significant at p < .05.

- --. m-m - l
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Table 3

Comparison of Interrater Reliabilities

.for Two Groups with Moderate Mean Differences

Scale for Frequencies of Frequencies of

Variable X Scores in Group 1 Scores in Group 2

1 0 0

2 2 0

3 16 2

4 2 is

5 0 3

Mean 3.00 4.05

Variance .211 .261

rWG .89 .87

ICC .70

Analysis of Variance

Source df SS MS

Between-Groups 1 11.025 11.025 F=46.79*

Within-Groups 38 8.959 .236

* < .01

Interrater reliability based on 1-(62/CE ), where a 2 = 2.0.

x
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Table 4

Comparison of Interrater Reliabilities

for Two Groups with Large Mean Differences

Scale for Frequencies of Frequencies of
Variable X Scores in Group 1 Scores in Group 2

1 2 0

2 16 0

3 2 2

4 0 15

5 0 3

Mean 2.00 4.05

Variance .211 .261

rWG1 .89 .87

ICC .90

Analysis of Variance

Source df SS MS

Between-Groups 1 42.025 42.025 F=178.43"

Within-Groups 38 8.959 .236

*?

P. < .01

llnterrater reliability based on I (.Sx2/aE2) , where a 2 2.0.




